Synthesis of Poly(paraphenylene vinylene)—Polystyrene- Based Rod-Coil Block Copolymer by Atom Transfer Radical Polymerization: Toward a Self-Organized Lamellar Semiconducting Material

نویسندگان

  • Cyril Brochon
  • Nicolas Sary
  • Raffaele Mezzenga
  • Chheng Ngov
  • Fanny Richard
  • Michaël May
  • Georges Hadziioannou
چکیده

Atom transfer radical polymerization (ATRP) was used as a versatile route to well-defined poly(diethylhexyl-p-phenylenevinylene-b-styrene) (PPV-b-PS) semiconducting block copolymers. For this purpose, original conjugated macroinitiators were synthesized from DEH-PPV and further used for the copolymerization reaction. The microphase-separated morphologies obtained with the semiconducting PPV-bPS block copolymer fulfill the basic structural requirements required to build efficient organic photovoltaic devices. VC 2008 Wiley Periodicals, Inc. J Appl Polym Sci 110: 3664–3670, 2008

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Order-order transition induced by mesophase formation in a novel type of diblock copolymers based on poly(isobutyl methacrylate) and poly[2,5- di(isopropyloxycarbonyl)styrene]†

Novel diblock copolymers based on poly(isobutyl methacrylate) (PiBMA) and poly[2,5di(isopropyloxycarbonyl)styrene] (PiPCS) were designed and prepared via consecutive atom transfer radical polymerization. They had relatively low molecular weight distributions and tunable molecular weights. The molecular characterization of the copolymers was performed with proton nuclear magnetic resonance spect...

متن کامل

Synthesis of poly(vinyl acetate) block copolymers by successive RAFT and ATRP with a bromoxanthate iniferter.

Poly(vinyl acetate)-b-polystyrene, poly(vinyl acetate)-b-poly(methyl acrylate) and poly(vinyl acetate)-b-poly(methyl methacrylate) block copolymers with low polydispersity (M(w)/M(n) < 1.25) were prepared by successive reversible addition-fragmentation chain transfer (RAFT) polymerization and atom transfer radical polymerization (ATRP) employing a bromoxanthate iniferter (initiator-transfer age...

متن کامل

Poly(vinylidene fluoride)/nickel nanocomposites from semicrystalline block copolymer precursors.

The fabrication of nanoporous poly(vinylidene fluoride) (PVDF) and PVDF/nickel nanocomposites from semicrystalline block copolymer precursors is reported. Polystyrene-block-poly(vinylidene fluoride)-block-polystyrene (PS-b-PVDF-b-PS) is prepared through functional benzoyl peroxide initiated polymerization of VDF, followed by atom transfer radical polymerization (ATRP) of styrene. The crystalliz...

متن کامل

Synthesis and Characterization of Helix-Coil Diblock Copolymers with Controlled Supramolecular Architectures in Aqueous Solution

The design and synthesis of suitable block copolymers, such as those consisting of both flexible components and rigid components, as building blocks for highly ordered supramolecular architectures have attracted considerable attention in the past several decades. The resulting supramolecular structures can potentially offer various functionalities by means of their photophysical, electrochemica...

متن کامل

Synthesis and characterization of novel rod–coil diblock copolymers of poly(methyl methacrylate) and liquid crystalline segments of poly(2,5-bis[(4-methoxyphenyl)oxycarbonyl] styrene)

Liquid crystalline diblock copolymers with different molecular weights and low polydispersities were synthesized by atom transfer radical polymerization of methyl methacrylate (MMA) and 2,5-bis[(4-methoxyphenyl)oxycarbonyl]styrene (MPCS) monomers. The block architecture (coilconformation of MMA segment and rigid-rod of MPCS segment) of the copolymer was experimentally confirmed by a combination...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009